Cyclic codes and minimal strong Gröbner bases over a principal ideal ring
نویسندگان
چکیده
منابع مشابه
On Skew Cyclic Codes over a Finite Ring
In this paper, we classify the skew cyclic codes over Fp + vF_p + v^2F_p, where p is a prime number and v^3 = v. Each skew cyclic code is a F_p+vF_p+v^2F_p-submodule of the (F_p+vF_p+v^2F_p)[x;alpha], where v^3 = v and alpha(v) = -v. Also, we give an explicit forms for the generator of these codes. Moreover, an algorithm of encoding and decoding for these codes is presented.
متن کاملSignature-based Criteria for Möller's Algorithm for Computing Gröbner Bases over Principal Ideal Domains
Signature-based algorithms have become a standard approach for Gröbner basis computations for polynomial systems over fields, but how to extend these techniques to coefficients in general rings is not yet as well understood. In this paper, we present a signature-based algorithm for computing Gröbner bases over principal ideal domains (e.g. the ring of integers or the ring of univariate polynomi...
متن کاملReduced Gröbner Bases in Polynomial Rings over a Polynomial Ring
We define reduced Gröbner bases in polynomial rings over a polynomial ring and introduce an algorithm for computing them. There exist some algorithms for computing Gröbner bases in polynomial rings over a polynomial ring. However, we cannot obtain the reduced Gröbner bases by these algorithms. In this paper we propose a new notion of reduced Gröbner bases in polynomial rings over a polynomial r...
متن کاملMDS codes over finite principal ideal rings
The purpose of this paper is to study codes over finite principal ideal rings. To do this, we begin with codes over finite chain rings as a natural generalization of codes over Galois rings GR(pe, l) (including Zpe). We give sufficient conditions on the existence of MDS codes over finite chain rings and on the existence of self-dual codes over finite chain rings. We also construct MDS self-dual...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Finite Fields and Their Applications
سال: 2003
ISSN: 1071-5797
DOI: 10.1016/s1071-5797(03)00003-0